Frequency Domain Quantification Of Manufacturing Process Resolution
نویسندگان
چکیده
Manufacturing processes are input/output systems subject to disturbances and uncertainties. Hence, process control is a necessary compensation. However, control tools cannot be chosen arbitrarily, but are limited by several process characteristics. Primary among these, process resolution determines the degree to which changes in process inputs produce changes in process states and in process outputs. In turn, process resolution dictates the applicability of specific control tools. Two other limitations are feedback time and process state measurability. This thesis provides a means of quantifying process resolution and thereby gives a metric of process controllability. Using Fourier Transforms, parameterized process-inputs and process-outputs are expressed as input frequencies and output frequencies. The process itself is represented as a transfer function, and process resolution is defined as the transfer function bandwidth. The use of Fourier Transforms is a generalization of digital signal processing techniques. These have been used previously in manufacturing to describe the shape of sheet-metal-stamping parts and tools. Reviews of control problems in injection molding, sheet metal forming, and composite processing are included as background and examples.
منابع مشابه
Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains
To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the for...
متن کاملA new technique for bearing fault detection in the time-frequency domain
This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملHeuristic Process Model Simplification in Frequency Response Domain
Frequency response diagrams of a system include detailed and recognizable information about the structural and parameter effects of the transfer function model of the system. The information are qualitatively and quantitatively obtainable from simultaneous consideration of amplitude ratio and phase information. In this paper, some rules and relationships are presented for making use of frequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013